Chrome 用户体验报告 (CrUX) 的原始数据可通过 BigQuery 获取,该数据库位于 Google Cloud Platform (GCP) 上。要使用 BigQuery,您需要具备 GCP 项目和 SQL 基础知识。
在本指南中,您将了解如何使用 BigQuery 针对 CrUX 数据集编写查询,以提取有关网页用户体验状况的见解深刻结果:
- 了解数据的组织方式
- 编写基本查询以评估来源的性能
- 编写高级查询以跟踪性能随时间的变化
数据组织
首先,我们来看一个基本查询:
SELECT COUNT(DISTINCT origin) FROM `chrome-ux-report.all.202206`
如需运行查询,请将其输入查询编辑器中,然后按“运行查询”按钮:
此查询包含两部分:
SELECT COUNT(DISTINCT origin)
表示查询表格中源站的数量。大体上讲,如果两个网址的架构、主机和端口相同,则它们属于同一来源。FROM chrome-ux-report.all.202206
指定源表的地址,该地址包含三个部分:- Cloud 项目名称
chrome-ux-report
,其中组织了所有 CrUX 数据 - 数据集
all
,表示所有国家/地区的数据 202206
表,采用 YYYYMM 格式的数据年份和月份
- Cloud 项目名称
此外,这里还有适合每个国家/地区的数据集。例如,chrome-ux-report.country_ca.202206
仅表示来自加拿大的用户体验数据。
每个数据集中自 201710 年以来每个月都有对应的表。系统会定期发布上一个日历月的新表。
数据表的结构(也称为架构)包含:
- 来源,例如,
origin = 'https://www.example.com'
:表示相应网站上所有网页的总体用户体验分布情况 - 网页加载时的连接速度,例如
effective_connection_type.name = '4G'
- 设备类型,例如
form_factor.name = 'desktop'
- 用户体验指标本身
- first_paint (FP)
- first_contentful_paint (FCP)
- 托管内容已加载 (DCL)
- 加载 (OL)
- experimental.first_input_delay (FID)
每个指标的数据都是以对象数组的形式组织的。在 JSON 表示法中,first_contentful_paint.histogram.bin
应如下所示:
[
{"start": 0, "end": 100, "density": 0.1234},
{"start": 100, "end": 200, "density": 0.0123},
...
]
每个分箱都包含开始时间和结束时间(以毫秒为单位),以及表示该时间范围内用户体验百分比的密度。换言之,对于这个假设的来源、连接速度和设备类型,12.34% 的 FCP 体验不到 100 毫秒。所有分箱密度的总和为 100%。
评估性能
让我们运用对表架构的了解,编写一个提取此性能数据的查询。
SELECT
fcp
FROM
`chrome-ux-report.all.202206`,
UNNEST(first_contentful_paint.histogram.bin) AS fcp
WHERE
origin = 'https://web.dev' AND
effective_connection_type.name = '4G' AND
form_factor.name = 'phone' AND
fcp.start = 0
结果为 0.01115
,这意味着此源上有 1.115% 的用户体验在 4G 和手机上介于 0 到 100 毫秒之间。如果我们希望将查询泛化到任何连接和任何设备类型,可以在 WHERE
子句中省略它们,并且只需使用 SUM
聚合器函数将其各自的分箱密度相加即可:
SELECT
SUM(fcp.density)
FROM
`chrome-ux-report.all.202206`,
UNNEST(first_contentful_paint.histogram.bin) AS fcp
WHERE
origin = 'https://web.dev' AND
fcp.start = 0
最终结果为 0.05355
,即所有设备和连接类型的 5.355%。让我们稍微修改一下查询,然后将“快速”FCP 范围为 0–1000 毫秒的所有分箱的密度相加:
SELECT
SUM(fcp.density) AS fast_fcp
FROM
`chrome-ux-report.all.202206`,
UNNEST(first_contentful_paint.histogram.bin) AS fcp
WHERE
origin = 'https://web.dev' AND
fcp.start < 1000
这会为我们提供 0.6977
。也就是说,根据 FCP 范围定义,web.dev 上 69.77% 的 FCP 用户体验被视为“快速”。
跟踪效果
现在,我们已提取了有关某个源站的性能数据,接下来将其与旧表中可用的历史数据进行比较。为此,我们可以将表地址重写为一个较早的月份,或者使用通配符语法查询所有月份:
SELECT
_TABLE_SUFFIX AS yyyymm,
SUM(fcp.density) AS fast_fcp
FROM
`chrome-ux-report.all.*`,
UNNEST(first_contentful_paint.histogram.bin) AS fcp
WHERE
origin = 'https://web.dev' AND
fcp.start < 1000
GROUP BY
yyyymm
ORDER BY
yyyymm DESC
在这里,我们可以看到,快速 FCP 体验的百分比每月都会变化几个百分点。
yyyymm | fast_fcp |
---|---|
202206 | 69.77% |
202205 | 70.71% |
202204 | 69.04% |
202203 | 69.82% |
202202 | 67.75% |
202201 | 58.96% |
202112 | 41.69% |
... | ... |
借助这些技术,您可以查询某个源站的性能、计算快速体验所占百分比,并跟踪该源站在一段时间内的表现。接下来,请尝试查询两个或更多源站并比较其表现。
FAQ
何时使用 BigQuery,而不是其他工具?
只有当您无法从其他工具(如 CrUX 信息中心和 PageSpeed Insights)获取相同的信息时,才需要使用 BigQuery。例如,BigQuery 可让您以有意义的方式对数据进行分割,甚至可以将其与其他公共数据集(如 HTTP Archive)联接起来,以进行一些高级数据挖掘。
使用 BigQuery 是否有任何限制?
是的,最重要的限制是,默认情况下,用户每月只能查询 1TB 的数据。除此之外,还适用 $5/TB 的标准费率。
在哪里可以详细了解 BigQuery?
如需了解详情,请参阅 BigQuery 文档。